Kubernetes
HyperDX uses the OpenTelemetry collector to collect logs, metrics, and Kubernetes events from Kubernetes clusters and forward it to your account. We support the native OpenTelemtry log format and require no additional vendor-specific configuration.
This Guide Integrates: Logs · Infra Metrics
To send over application-level metrics or APM/traces, you'll need to add the corresponding language integration to your application as well.
Creating the Otel Helm Chart Configuration Files
To collect logs and metrics from both each node and the cluster itself, we'll need to deploy two separate OpenTelemetry collectors. One will be deployed as a DaemonSet to collect logs and metrics from each node, and the other will be deployed as a Deployment to collect logs and metrics from the cluster itself.
Creating the DaemonSet Configuration
The daemonset will collect logs and metrics from each node in the cluster, but will not collect Kubernetes events or cluster-wide metrics.
Create a file called daemonset.yaml
with the following contents:
# daemonset.yaml
mode: daemonset
# Required to use the kubeletstats cpu/memory utilization metrics
clusterRole:
create: true
rules:
- apiGroups:
- ''
resources:
- nodes/proxy
verbs:
- get
presets:
logsCollection:
enabled: true
hostMetrics:
enabled: true
# Configures the Kubernetes Processor to add Kubernetes metadata.
# Adds the k8sattributes processor to all the pipelines and adds the necessary rules to ClusterRole.
# More Info: https://opentelemetry.io/docs/kubernetes/collector/components/#kubernetes-attributes-processor
kubernetesAttributes:
enabled: true
# When enabled the processor will extra all labels for an associated pod and add them as resource attributes.
# The label's exact name will be the key.
extractAllPodLabels: true
# When enabled the processor will extra all annotations for an associated pod and add them as resource attributes.
# The annotation's exact name will be the key.
extractAllPodAnnotations: true
# Configures the collector to collect node, pod, and container metrics from the API server on a kubelet..
# Adds the kubeletstats receiver to the metrics pipeline and adds the necessary rules to ClusterRole.
# More Info: https://opentelemetry.io/docs/kubernetes/collector/components/#kubeletstats-receiver
kubeletMetrics:
enabled: true
config:
receivers:
# Configures additional kubelet metrics
kubeletstats:
collection_interval: 20s
auth_type: 'serviceAccount'
endpoint: '${env:K8S_NODE_NAME}:10250'
insecure_skip_verify: true
metrics:
k8s.pod.cpu_limit_utilization:
enabled: true
k8s.pod.cpu_request_utilization:
enabled: true
k8s.pod.memory_limit_utilization:
enabled: true
k8s.pod.memory_request_utilization:
enabled: true
k8s.pod.uptime:
enabled: true
k8s.node.uptime:
enabled: true
k8s.container.cpu_limit_utilization:
enabled: true
k8s.container.cpu_request_utilization:
enabled: true
k8s.container.memory_limit_utilization:
enabled: true
k8s.container.memory_request_utilization:
enabled: true
container.uptime:
enabled: true
exporters:
otlphttp:
endpoint: 'https://in-otel.hyperdx.io'
headers:
authorization: '<YOUR_HYPERDX_API_KEY_HERE>'
compression: gzip
service:
pipelines:
logs:
exporters:
- otlphttp
metrics:
exporters:
- otlphttp
Creating the Deployment Configuration
To collect Kubernetes events and cluster-wide metrics, we'll need to deploy a separate OpenTelemetry collector as a Deployment.
Create a file called deployment.yaml
with the following contents:
# deployment.yaml
mode: deployment
# We only want one of these collectors - any more and we'd produce duplicate data
replicaCount: 1
presets:
kubernetesAttributes:
enabled: true
# When enabled the processor will extra all labels for an associated pod and add them as resource attributes.
# The label's exact name will be the key.
extractAllPodLabels: true
# When enabled the processor will extra all annotations for an associated pod and add them as resource attributes.
# The annotation's exact name will be the key.
extractAllPodAnnotations: true
# Configures the collector to collect kubernetes events.
# Adds the k8sobject receiver to the logs pipeline and collects kubernetes events by default.
# More Info: https://opentelemetry.io/docs/kubernetes/collector/components/#kubernetes-objects-receiver
kubernetesEvents:
enabled: true
# Configures the Kubernetes Cluster Receiver to collect cluster-level metrics.
# Adds the k8s_cluster receiver to the metrics pipeline and adds the necessary rules to ClusteRole.
# More Info: https://opentelemetry.io/docs/kubernetes/collector/components/#kubernetes-cluster-receiver
clusterMetrics:
enabled: true
config:
exporters:
otlphttp:
endpoint: 'https://in-otel.hyperdx.io'
headers:
authorization: '<YOUR_HYPERDX_API_KEY_HERE>'
compression: gzip
service:
pipelines:
logs:
exporters:
- otlphttp
metrics:
exporters:
- otlphttp
Deploying the OpenTelemetry Collector
The OpenTelemetry collector can now be deployed in your Kubernetes cluster using the OpenTelemtry Helm Chart (opens in a new tab).
Add the OpenTelemetry Helm repo:
helm repo add open-telemetry https://open-telemetry.github.io/opentelemetry-helm-charts # Add Otel Helm repo
Install the chart with the above config:
helm install my-opentelemetry-collector-deployment open-telemetry/opentelemetry-collector -f deployment.yaml
helm install my-opentelemetry-collector-daemonset open-telemetry/opentelemetry-collector -f daemonset.yaml
Now the metrics, logs and Kubernetes events from your Kubernetes cluster should now appear inside your HyperDX account.
Forwarding Resource Tags to Pods (Recommended)
To correlate application-level logs, metrics and traces with Kubernetes metadata
(ex. pod name, namespace, etc.), you'll want to forward the Kubernetes metadata
to your application using the OTEL_RESOURCE_ATTRIBUTES
environment variable.
Here's an example deployment that forwards the Kubernetes metadata to the application using environment variables:
# my_app_deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: app-deployment
spec:
replicas: 1
selector:
matchLabels:
app: app
template:
metadata:
labels:
app: app
# Combined with the Kubernetes Attribute Processor, this will ensure
# the pod's logs and metrics will be associated with a service name.
service.name: <MY_APP_NAME>
spec:
containers:
- name: app-container
image: my-image
env:
# ... other environment variables
# Collect K8s metadata from the downward API to forward to the app
- name: POD_NAME
valueFrom:
fieldRef:
fieldPath: metadata.name
- name: POD_UID
valueFrom:
fieldRef:
fieldPath: metadata.uid
- name: POD_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace
- name: NODE_NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName
- name: DEPLOYMENT_NAME
valueFrom:
fieldRef:
fieldPath: metadata.labels['deployment']
# Forward the K8s metadata to the app via OTEL_RESOURCE_ATTRIBUTES
- name: OTEL_RESOURCE_ATTRIBUTES
value: k8s.pod.name=$(POD_NAME),k8s.pod.uid=$(POD_UID),k8s.namespace.name=$(POD_NAMESPACE),k8s.node.name=$(NODE_NAME),k8s.deployment.name=$(DEPLOYMENT_NAME)